

EPA's Environmental Technology Verification Program

ETV Program Goal

To verify the environmental performance characteristics of <u>commercial-ready technologies</u> through the evaluation of <u>objective and quality assured data</u>, so that potential purchasers and permitters are provided with an <u>independent and credible assessment</u> of what they are buying and permitting.

Important Principles

- A voluntary program for commercial-ready private sector technologies
- High-quality data and information; not an "approval" or "certification" process
- Public-private partnerships to efficiently execute testing
- A "market-based" program through ongoing stakeholder participation
- Web-based publication of all products for speed and universal access

ETV Program Critical Elements

Fairness

1. Testing available to all vendors of commercialready technologies within defined categories

Credibility

- 2. Objective third-party testing
- 3. Technically sound protocols/test plans, publicly available and capable of reproduction

Transparent

4. Public availability of methods and test results

Quality

5. Quality management and data acquisition

Six ETV Technology Centers

- ETV Advanced Monitoring Technology Center
- ETV Air Pollution Control Technology Center
- ETV Greenhouse Gas Technology Center
- ETV Drinking Water Systems Center
- ETV Water Protection Technology Center
- ETV Pollution Prevention, Recycling and Waste Treatment System Center

Testing Organizations

Stakeholders

ETV Players

International Communities

Vendors

Financial Investors

Customers/End Users

ETV Verification Process

Stakeholder Roles

- Priority Setting
 - Serious environmental challenges
 - Technology available for evaluation
 - Practicality
- Protocol Design
 - Verification factors
 - "Asking the right questions"
 - Test design
 - "Getting the right answers"

Verification Costs Who Pays?

- EPA Pays for
 - Protocol & Test Plan Development
 - Stakeholder process
 - →Program outreach
- Vendor Pays for
 - →Testing
 - ♦ Data analysis
 - ♦Product outreach

Verification Costs Who Pays?

- Shared Costs
 - → Quality Assurance
 - →Report Writing and Review

Ballast Water Treatment Technology Verification

- Joint Effort Between EPA & USCG
- NSF International (Verification Partner Organization)
- Battelle CREM (Contracted Technical Assistance)
- Stakeholder Advisory Group
- Technology Panel

Definition

Ballast water treatment technologies are defined as prefabricated, commercial-ready, treatment systems designed to either remove, kill or inactivate biological organisms that are potentially harmful to human health and the receiving ecosystem from ballast water prior to discharge

Protocol Approach

- Ballast water conditions are highly variable (i.e., physical and biological composition) causing testing complexity
- Goal provide sufficient challenge/test conditions
- Use most challenging natural conditions at two salinity concentrations
- Develop a matrix of core challenge conditions
- Supplemental parameters dictated by technology

Potential Challenge Conditions

- Challenge water matrix
 - Define by salinity; most challenging and moderate challenge
 - dissolved organic carbon and solid organic matter
- Known microbiological spike
 - One bacterial, one viral
 - One or two phytoplankton easy to culture in most resistant form and representative of salinity
 - One or two zooplankton representative of salinity

Verification Factors

- Biological performance
- Power requirements and predictability
- Temperature and energy efficiency, CT curve
- O&M issues
- Byproducts and residuals
- Environmental impact of treated discharge

Protocol Issues

- Single or multiple protocols
- Duration of testing
- Use of surrogates in testing
- Land based, shipboard or both
 - Technology dependent considerations

Candidate Technologies

- Cyclonic separation / UV treatment
- Centrifugal separation / UV treatment / chemical biocides
- Filtration
- Ozone
- Mechanical deoxygenation

ETV Program Information

Web sites:

- →www.epa.gov/etv
- →www.nsf.org/etv

Contacts:

- ♦ EPA Ray Frederick (732) 321-6627
 - frederick.ray@epa.gov
- ♦NSF Tom Stevens (734) 769-5347
 - stevenst@nsf.org

